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In materials processing there is often a need to evaluate the surface con-
dition (e.g. temperature, heat flux, convection coefficient, contact resistance)
that cannot be measured directly due to the perturbing effect of probes and
adverse conditions that could destroy sensors. We can infer this boundary
condition from the transient response of a submerged sensor(thermocouple)
(see Fig. 1) using Inverse Heat Conduction (IHC) analysis. An example
of application of THC is inferring the unknown surface heat flux on a slab
assuming linear heat conduction. This can be shown to be equivalent [1]
to inverting the Duhamel’s integral equation, which is a Volterra integral
equation of the first kind

Tu(t) — Ty = /t 0 (VL £t (1)

where Tj is the initial die temperature, Ty(t) is the die temperature at depth
d and time t, g, is the surface heat flux and k(t, t*) is the kernel. Equation (1)
can be rewritten as a Axr = b linear system where x is the heat flux and b
is the temperature. A, known as Stolz matrix, is typically ill-conditioned.
Small errors in thermocouple measurement (parametric uncertainty) amplify
into large errors in the inferred surface heat flux.

[ll-conditioning can be resolved to an extent by regularization methods
such as Tikhonov, TSVD, Beck’s future timestep method etc. [2, 7, 1]. IlI-

conditioning of the A matrix increases with decreasing Fourier number Oii—%t
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Figure 1: Submerged thermocouple in metal

where « is the thermal diffusivity, d is the thermocouple depth and At is
the timestep. As Fourier number is inversely proportional to the square of
depth, the best location of the thermocouple is close to the surface.

Regularization stabilizes against variations in data due to signal noise
but does not address uncertainties in parameters. There are instances where
there is uncertainty in known parameters. For example, it is difficult to
find the exact location of the sensor (thermocouple) without a destructive
postmortem analysis. This position error can cause large errors in the in-
ferred data if the sensor is not properly located. There is a need to quantify
the combined uncertainty due to position error and measurement noise and
determine the optimal sensor location based on the two sources of error.

The Fisher Information Matrix is an ideal tool for such an analysis. The
Fisher Information Matrix [3, 4, 5] is the information a random variable
has around an unknown parameter. The rationale for the use the Fisher
Information Matrix in sensor placement is that the Cramer-Rao theorem sets
a lower bound of estimation error of unknown parameters as M !, where M
is Fisher Information Matrix [3] given by

M = EK: ﬂ (2)
1 Sy + (%)267Y

where ¢y, is the predicted temperature for the k£ th measurement, u the un-



known parameter, aa%“ is the sensitivity of measurement to wu, % is the

sensitivity w.r.t known parameter b, G' is known parameter covariance ma-
trix, and Sy is measurement noise. The denominator of equation (2) can be
considered as equivalent noise combining the effects of measurement noise
and known parameter noise.
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Figure 2: Fisher Information Matrix

An example of the application of the Fisher Information Matrix given in
Emery et al. [3] (that we have reproduced here) is for a slab of thickness
L = 0.04, convective heat transfer coefficients hg = 5 and hy, = 20 at x = 0
and x = L respectively, fluid temperature 1000° C, thermal conductivity
k = 1, initial temperature 0° C, pC' = 10° (where p and C are the density
and heat capacity respectively). All units are SI. The plots of the Fisher
Information Matrix at different locations at ¢ = 200s and ¢t = 1000s using
equation (2) for measurement noise o, = 1% are given in Fig. 2. This
indicates that the optimum location of the sensor (and maximum M) is
x =~ 0.22 and x ~ 0.13 for t = 200s and ¢t = 1000s respectively. This considers
only measurement noise but can be easily extended to include noise in the
known parameters.



In Hot Forming Die Quenching (HFDQ) [6], the as-formed material prop-

erties greatly depend on the microstructure (bainite, martensite) which in
turn depends on the cooling rate of the thin blank. Hence, it is critical to
characterize the heat transfer coefficient between the blank and die. We will
recover the heat transfer coefficient using IHC techniques. Using the Fisher
Information analysis, we will show the optimum location of the sensor (ther-
mocouple) in the die is closest to the surface. This may in part be due to the
slow cooling rate. We will adapt this analysis to other quenching/thermal
processing problems with a higher cooling rate.
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